
learn design share

66 January & February 2017 www.elektormagazine.com

Boards like the Arduino M0 Pro and DUE provide, respectively,
the same pin-out as their 8-bit Arduino Uno and Mega cous-
ins, but with the advantage of significantly more SRAM, flash
memory and CPU clock speed. Perhaps the only disadvantage
or challenge with these boards is the 3.3-volt restriction on the
input and output pins. However, these advantages, combined
with support for many of the available shields on the market
and the established base of libraries, make the ‘upgrade’ sim-
ple and fast.
The biggest challenge remaining for the advanced hobbyist
or professional using Arduino for rapid prototyping is the lim-
ited Integrated Development Environment (IDE). For entry
into the world of Arduino, the Arduino IDE is perfect with its
simplicity and clarity. Once a sketch becomes slightly more
involved, however, and failures in the code cannot be found
with a blinking LED or serial message output alone, the sheer
power of a professional IDE is highly alluring.

Debug (as) a Pro, Pay Nothing
The Arduino M0 Pro (from Arduino.org) as well as the Arduino/
Genuino Zero (from Arduino.cc), based on the SAM D21G from

Atmel (now Microchip), are kitted out with a slightly different
programming interface compared to previous boards. The device
behind the USB “programming” connecter is also an Embed-
ded Debugger (EDBG) which can be used by many different
development environments as an interface to not only program
the board but additionally to interrogate the internal workings
of the MCU at the heart of the system. With an appropriate
IDE, it is then possible to debug not only your sketch, but the
entire Arduino core code and libraries.
One such IDE is iSystem’s winIDEA Open, the free version of
their IDE targeted at MCUs that use ARM’s Cortex-M processor
technology. As a professional tool it is easy to get started, as,
at the most basic level, all that is needed is the output file from
a sketch built in the classic Arduino IDE. However, as we will
discover, the build manager can also be invoked to speed up
the compilation of sketches. Additionally, the integrated test
environment testIDEA can be used to check whether any bugs
have scurried into our project during development.
There are many details and nuances behind configuring and
using such a tool. In order to provide both an overview for those
simply interested in this concept as well as detailed instruc-
tions for those who would like to go hands on, the overview in
this article is supplemented by a series of tutorials and code
available online [1].

Debugging
the Arduino Zero & M0 Pro

By Stuart Cording (iSystem, Germany)

Delving deeper into the world of Arduino

learn design share labs project reader project

www.elektormagazine.com January & February 2017 67

My First Project
When starting a new project for a SAM D21 MCU in other IDEs,
such as Atmel Studio which has been covered by Elektor before
[2][3], you really need to start from a template and have to
include many pre-defined library source code files. The win-
IDEA Open IDE is different in that it forms the premise that
the output of the compiler toolchain, for example the ELF
file containing the binary code of your Arduino sketch, is the
most important file of your project. From this single file, the
IDE can find all of your source code and the core Arduino files
and libraries needed to debug the application code. Thus the
simplest method to debug an Arduino sketch is to create and
build it in the Arduino IDE and then import and download the
resulting ELF file into the Arduino M0 Pro using winIDEA Open.
In the first three projects of Tutorial 1 [1], the classic ‘Blink’
sketch is created in the standard Arduino IDE. Due to slight
differences between the Arduino M0 Pro and Arduino/Genuino
Zero, winIDEA Open needs to be configured slightly differently.
However, for those who just want to get started, a preconfig-
ured workspace is provided allowing the developer to simply
open the appropriate workspace and download the ELF file that
the Arduino IDE has created.
Once the code is in the MCU, it is then possible to start exploring
the internal workings of the Arduino core code. In the “Project

Workspace” window (Figure 1) all the files that belong to the
project, along with all the used functions, are listed in a tree
structure just like in Windows’ File Explorer. So, if you have
ever wondered what code lies behind the delay() function,
simply expand the “Functions” folder, scroll down until you
find delay(unsigned long ms) and double-click. In the editor
window, the function will be displayed. If you are interested to
see when the function is called, you can set a break-point on
a line of code where a grey box is also shown in the editor’s
gutter (the grey region in the text editor to the left of the line
numbers). Simply right-click with the mouse and select “Set
Breakpoint”. Once the code is restarted, the MCU will halt when
it reaches this breakpoint, allowing you to analyse the content
of variables, registers and memory.
Note that, despite the Arduino environment’s apparent simplic-
ity, the code in its core software makes good use of many of the
advanced tricks the C programming language has to offer. As
such, some ‘symbols’ (names of variables and functions) may
appear listed in the Project Workspace window but may not actu-
ally be associated with any code of significance in the software.

Speeding Up the Workflow
One of the issues with the method discussed thus far is that
the original Blink.ino cannot be debugged properly. The issue

With the introduction of ARM Cortex-M-based 32-bit microcontrollers to the Arduino
portfolio, the maker has some very powerful hardware in their hands. For entry into
the world of Arduino, the simplicity and clarity of the Arduino code editor is perfect.
However, once a sketch becomes more involved, the power of a professional
development environment becomes highly alluring.

learn design share

68 January & February 2017 www.elektormagazine.com

relates back to how the Arduino IDEs compile the sketch. For
the beginner, this is really no problem, but when wanting to
go deeper into the code, it would be nice to be able to build a
sketch outside of the Arduino IDE.
There is also another benefit to be gained from this. One of
the most frustrating things about the standard Arduino IDEs is
that every compilation rebuilds the entire project from scratch.
Again, for smaller sketches this is no big deal. However, as
soon as a couple of libraries are included and you have several
source files, rebuilding and programming the board starts to
become quite a laboured activity. Here again, a professional
IDE can help by providing the means to build the project out-
side of the IDE.

In order to make the build process more intuitive and faster,
Tutorial 2 [1] uses a Makefile to build our sketch. This requires
a few changes to the creation of your sketch as follows:
•	Your sketch will need to be stored in a file named <SKETCH
NAME>.cpp and stored in a folder named ‘src’.

Your sketch will need the line of code #include
"Arduino.h" (see Figure 2) added to the top of it
(before the setup() function call).

In addition, you will need the make utility which can be installed
as part of MinGW. Detailed instructions on how to do this can
be found in Tutorial 2, available from [1].
Now, instead of building the sketch in the Arduino IDE (Fig-
ure 3) and then simply programming and debugging the code
in the winIDEA Open IDE, the whole process can be under-
taken in winIDEA Open.
As a result, we can now debug our sketch. The project work-
space works in a manner similar to that of Windows Explorer,
allowing the elements listed to be “expanded” to show their
contents in the same way folders can be expanded. In the
Project Workspace simply expand the elements listed using the
plus symbol to the left of each element in the following order:
sketch.elf ª Modules ª src ª Blink.cpp (Figure 4). Finally,
double-click on loop() or setup() and the editor will open the
source code at the respective line of code where the function
is implemented. As we see in the gutter, each line of code has
a grey box associated with it allowing us to set a breakpoint in
the code execution if we wish. Simply right-click on the desired
line of code and select “Set Breakpoint”.

Tips & Tricks
Now is probably a good time to note the limitations of the debug
features of the SAM D21. In total, only three breakpoints can
be set at any one time so, at some point, you will get a win-
dow pop up explaining that all breakpoint resources are used
up (Figure 5). The easiest method to work around this is to
disable a current breakpoint (right-click on a line with a break-
point and select ‘Disable Breakpoint’) and then set the new
breakpoint at the location of your choosing. It is also possible
to ‘Clear Breakpoint’, but disabling a breakpoint has the advan-
tage of leaving a red marker in the gutter of the code editor
as a reminder of where the breakpoint previously was. This
is especially helpful as you jump back and forth in the code.
In the event that you are interested in the efficiency of the code
generated by the Arduino tool chain (which incidentally is GCC),
we can also open a disassembly window from the menu View

Figure 1. The ‘Functions’ view shows all the functions included in the
sketch, even those belonging to the Arduino core and library code.

Figure 2. Blink.cpp in the winIDEA Open IDE.

Figure 3. The Blink sketch in the Arduino IDE.

learn design share labs project reader project

www.elektormagazine.com January & February 2017 69

ª Disassembly. If we click inside this window (Figure 6), any
further single-stepping of the code will be executed instruction
by instruction, instead of source code line by source code line
as is the case in the editor window. In this way it is also pos-
sible to see how the CPU registers are used during the calling
of functions to pass parameters, amongst other things.

Beyond Debugging
Typically, when developing an application, specific functional-
ity will be broken out into separate functions. For small pro-
jects, where perhaps a single developer is responsible, it is
relatively easy to keep track of what is working, what isn’t
and where a bug might be when the code fails. However, for
larger, multi-programmer projects, it can help to have a bat-
tery of tests available that, when executed, ensure that the
code is still operating as originally specified. For this purpose,
winIDEA includes the Original Binary Code (OBC) unit testing
tool testIDEA. Here we will use it to develop some tests for a
function that evaluates an imaginary input value and returns
a new time delay for our delay() function call.
The algorithm implemented in the code is quite simple (Fig-
ure 7). If the passed value is less than 50, it returns 150. If
the passed value is between 50 and 99, it returns 1000. For
all other values, it returns 1750. Having developed the code,
it would make sense to develop a short test that could be exe-
cuted to ensure that it still works, even if someone else makes
changes and introduces a bug into the code.
Before writing tests for a function, it is worthwhile initially
considering how you would go about testing it by writing the
steps down on a piece of paper or making a small table of
input and expected output values. In the Table 1 we have
focused on input values at the extremes of possible inputs
as well as values that are close to the boundaries defined in
the algorithm (50 and 100).
In order to develop our tests, from the menu bar, we select
Test ª Launch testIDEA. Upon starting testIDEA, the tool sug-
gests creating a ‘test specification file’. This file is where our
tests will be stored and the file extension is ‘iyaml’. Here we
explain how to create a test:

•	From the menu, select Test ª New Test…
•	Now we need to define the function to be tested. Before

we can do this, we have to refresh the link to our winIDEA

project by clicking the refresh symbol. Once complete we
can select our function to be tested, evaluateNumber(),
from the drop-down list.

•	In the Parameters box we enter the value to be passed to
the function. For test number 1, this is 0.

•	Next we enter the Expected Result, first selecting the
‘Default expression’ radio button. In the field we enter
150, which is the expected response entered in our table.

•	Click OK and the first test is complete.

Figure 4. The sketch executable can be explored as if it was a folder tree.

Figure 5. Message when no more breakpoints are available.

Advertisement

learn design share

70 January & February 2017 www.elektormagazine.com

The uniqueness of OBC testing is that the testing itself all
occurs on the MCU target in use and not, like in some other
unit testing tools, in a simulation of the MCU. When we now
execute this test, the test will be actually executed on the MCU
target after downloading the code into the MCU’s flash memory.
This is performed by selecting Test ª Run All Tests. Hopefully,
upon executing the tests, the result will be “OK”, indicated by
a small green checkbox next to the test in the Outline panel.
In order to distinguish all the different tests from one another, we
can add some meta data to our test. In the Form panel, select
‘Meta’ and add a Test ID such as ‘Test_1’. We can now go on to
add the remaining tests to our testing plan. Upon completion, we
can run all the tests which should result in a pass in each case.
Of course, the real value is in using the tool to find any bugs that
have slipped in whilst we weren’t looking. Let us assume that
a colleague on the team misunderstands the specification and
decides that all the less-than (‘<') comparisons should actually
be less-than-or-equal (‘<=') comparisons and changes them
in your code. The first time you become aware of the issue is
when the project as a whole does not work as expected. To
trial this potential mistake, replace the ‘<' with ‘<=' at lines 20
and 22 in the Blink.cpp source code (Tutorial 3, Project 5 [1]).
In order to see where the bug may have occurred, simply rebuild
the application in winIDEA, open up the test specification in
testIDEA and run all tests. You should see that tests 5 and 9
now fail and, working from that result, it should be possible
to determine the cause of the error.

Sounding off
The Cortex-M-based Arduino boards have enormous potential,
especially in the area of rapid prototyping. STMicroelectron-
ics recently announced a Cortex-M4 STM32-based board in
the form of the STAR Otto. Such boards will likely be used for
complex prototyping with Ethernet and Wi-Fi shields. A pro-
fessional debugging environment, such as winIDEA Open, will
certainly provide relief when searching for why a sketch is not
quite working as expected.

(160228)

Web Links

[1] www.elektormagazine.com/160228

[2] www.elektormagazine.com/130392

[2] www.elektormagazine.com/140037

The SAMD21 is just one in the range of SAM D ARM
Cortex-M0+ based, 32-bit microcontrollers from Atmel.
These devices offer up to 256 kB of flash memory and
32 kB of SRAM. Additionally, the devices boast a wide range
of interfaces, including full-speed USB, a real-time counter
for implementing a clock, USART, SPI and I²C interfaces,
and a 12-bit ADC. Optimal energy efficiency is also covered
with the power consumption lying at 70 µA/MHz. The family
also features an automotive grade version of the MCU and
some devices can be used to implement a capacitive touch
interface, making use of Atmel algorithms to implement
buttons, sliders and wheel user interfaces.

www.atmel.com/products/microcontrollers/arm/sam-d.aspx

Table 1. Input values to exercise our algorithm
and the expected output values.

Test Number Input Value Expected Response

1 0 150

2 1 150

3 48 150

4 49 150

5 50 1000

6 51 1000

7 98 1000

8 99 1000

9 100 1750

10 101 1750

11 150 1750

12 200 1750

13 255 1750

returnValue = 0

returnValue = 150

returnValue = 1000

returnValue = 1750

Start

End

x < 50?

x < 100?

Figure 7. Flow diagram of a simple algorithm.

Figure 6. Disassembly view for the Blink sketch.

	EN2017010011
	EN2017010031
	EN2017010041
	EN2017010061
	EN2017010071
	EN2017010081
	EN2017010141
	EN2017010151
	EN2017010211
	EN2017010241
	EN2017010261
	EN2017010301
	EN2017010311
	EN2017010321
	EN2017010401
	EN2017010421
	EN2017010461
	EN2017010501
	EN2017010561
	EN2017010601
	EN2017010661
	EN2017010711
	EN2017010741
	EN2017010851
	EN2017010921
	EN2017010941
	EN2017010981
	EN2017011011
	EN2017011061
	EN2017011081
	EN2017011121
	EN2017011141
	EN2017011151
	EN2017011181
	EN2017011191
	EN2017011201
	EN2017011221
	EN2017011241
	EN2017011251
	EN2017011281
	EN2017011301
	Adverts EN 2017 Jan:Feb

